
Using Ideas from Hardware to 
Accelerate Zero-Knowledge 

Virtual Machines
Eric Archerman, Celine Zhang

Mentor: Simon Langowski

MIT PRIMES October Conference
October 12, 2024



Agenda

1. Background
a. Verifiable computation
b. SNARKs and Zero-Knowledge

2. Zero-Knowledge Virtual Machines
3. Hardware Optimizations

a. Caching
b. Batching + Multiple in-flight instructions

4. Our work + Implementation plan



Background



Motivating problem: how can we verify computation?

I ran program P and 
got result y.

Is this true? I 
need proof…

Trivially: Sam runs P himself, but… 
Can we do better?



Traditional SNARK Design

signal input a, b, c;
sum <== a + b;
prod <== sum * c;
res <== prod + 5;
signal output res;

program P in DSL

x

x

a b c 5

+

2 51

6

5

102

612

in: {2, 51, 6}

out: 617

‘mathier’ representation (arithmetic circuit)

SNARK backend

proof!

heavy 
(polynomial) 
computation



+

gates

polynomial 
math

input(s)

output(s)

computer 
program

mathematical 
“blender”

input(s)

Yay! Private 
inputs!Zero-Knowledge:

Verifier learns nothing 
beyond claim validity.

Enables new use cases!



Applications of Verifiable Computation

cloud computing

Offloads 
compute

databases

Offloads 
storage

ML

Verifiable 
training and 
evaluation

blockchain 
scaling

Reduces 
node work



Great, but…

x

+

a b c 1

+

Intermediate rep

SNARK backend

signal input a, b, c;
sum <== a + b;
prod <== sum * c;
res <== prod + 1;
signal output res;

program P in DSL Low-level: Messy, 
Hard-to-learn, 
Error-prone



Towards Usability:
Zero-Knowledge Virtual Machines



The Big Idea of zkVMs

x

+

a b c 1

+

+

+

d 4 c 1

+
+

x

+

5 d 7

Traditional SNARKs: a different 
circuit for each program

x

+

d 4 c 1

+
x

h

+

+
+

zkVMs: a single circuit that 
verifies CPU actions



How CPUs Process Instructions

Fetch

Decode Execute

63 → ADD ADD(5, 9) → 14

PC INSTRUCTION: (63, 5, 9)



Jolt by a16z

Check fetch

Check 
decode

Check 
execute

x
+

a b c 1

+

3 7
1
1

1
1
0

1
1
0

BEQ(6, 0)
DIV(5, 8)
ADD(5, 4)
MUL(9, 7)

Check 
memory

R U F = W U I



Optimizing zkVMs

● zkVMs are too slow for many practical 
applications
○ Overhead is introduced at every step

● We have made lots of optimizations to 
physical CPUs over the last 50 years, and 
we would like to make similar 
optimizations to zkVMs
○ zkVMs are a very new technology, so 

not much of this kind of optimization 
has been made



Batching

Ideas from Hardware

Caching Multiple in-flight instructions



Cache Memory

Cache Memory

9 19 7 17

Processor

compute stuff has stuff

Programs reuse 
values

fast
slow



Caching for zkVMs

Cache

9 19 7 17

Processor

1

If not found:
2

fast proof 
per access

slow proof 
per access

++ emulation overhead

++ checks for cache security
Costs:



Memory Batching

LOAD(address 4)

LOAD(address 5)

mem[4]

LOAD(address 6)

mem[5]

mem[6]

mem[(4, 5, 6)]

mem[5]

mem[6]

3 memory accesses

LOAD(address 4)

LOAD(address 5)

LOAD(address 6)
1 memory accesses



Multiple In-Flight Instructions

ADD(mem[4], mem[5])

MUL(mem[5], mem[6])

mem[(4, 5, 6)]

mem[(4, 5, 6)]

ADD(mem[4], mem[5])
MUL(mem[5], mem[6])

mem[(4, 5, 6)]
?

?
Not all groups of instructions can be verified this way!



Next Steps - The Implementation



Our Work
We have modelled the tradeoff 
between number of VM steps 
and work done in each step for 
a similar work, and the data 
indicates that there is an 
optimal step size

● This should correspond to 
the optimal number of 
instructions per VM step



Implementation Plan

● Caching:
○ Redesign constraint system to account for caching

■ Ensure security of cache operations to prevent prover 
cheating

○ Optimize caching algorithm/cache size
● Memory batching/multiple in-flight instructions:

○ Redesign memory checking to handle larger memory chunks
○ Redesign constraint system to resolve potential conflicts between 

multiple in-flight instructions
○ Find the optimal batch size and number of in-flight instructions
○ Fine-tune both optimizations to reap the most benefit out of both



Acknowledgements

We would like to thank everyone who made this talk possible, 
including:

● Our mentor Simon Langowski
● Our parents and friends, for moral support
● Uber, for driving Celine here
● Prof. Srini Devadas and Dr. Slava Gerovitch
● The MIT PRIMES program for giving us this wonderful opportunity



References

● Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: SNARKs for Virtual 
Machines via Lookups.

● Srinath Setty, Justin Thaler, Riad Wahby. Unlocking the lookup 
singularity with Lasso.

● Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. 
Proving the correct execution of concurrent services in 
zero-knowledge.

● Xixun Yu and Zheng Yan. A survey of verifiable computation.


